These include: All of Us are Dead Season 2, Squid Game 2, Extraordinary Attorney Woo Season 2, Hellbound Season 2, Signal 2, Weak Hero Class 2, and Sweet Home 3.
Netflix has confirmed the renewal of some of its most successful titles.
While the audience eagerly waits for such much-anticipated sequels as Stranger Things Season 5 and Bridgerton Season 3and 4, the streaming giant has now announced an amazing lineup of 7 K-drama series releasing next year in 2024.
These include: All of Us are Dead Season 2, Squid Game 2, Extraordinary Attorney Woo Season 2, Hellbound Season 2, Signal 2, Weak Hero Class 2, and Sweet Home 3. Let’s know more about them:
All of Us Are Dead Season 2
The second season of the critically acclaimed zombie post-apocalyptic K-drama will hit Netflix in 2024. “If the first season can be seen as having presented humanity’s survival, the next season can talk about the survival of zombies,” the makers said about the upcoming season.
Squid Game 2
Squid Game, which prides itself on being the most-watched non-English TV show on the streaming platform to date, is expected to return with Season 2 around Christmas 2024. Director Hwang Dong Hyuk will explore a separate story and the season will bring a fresh batch of contestants.
Extraordinary Attorney Woo Season 2
Extraordinary Attorney Woo was one of the most popular K-dramas of 2022. On August 17, 2022, president Lee Sang-baek of AStory, the production company for Extraordinary Attorney Woo, first confirmed that the drama would be renewed for a second season. Season 2 premieres in 2024.
Hellbound Season 2
Based on the production timeline for Season 1 – which was filmed from August 2020 to January 2021, before being released in November 2021 – the second season of Hellbound might only be released in the second half of 2024.
Signal 2
The 2016 K-drama which attracted audiences with its walkie-talkie-wielding detectives also returns with a season 2 in 2024. Writer Kim Eun Hee has dropped a hint: Season 2 is a possibility in 2024. Although the show is yet to gate a release date, the second season is definitely in the making.
Weak Hero Class 2
The first installment of the series debuted on the streaming platform Wavve in 2022 and received immense success worldwide. Weak Hero's production team is now set to put Season 2 on Netflix. With Weak Hero Class Season 1 available on Wavve and Weak Hero Class Season 2 available on Netflix, this is an unconventional release strategy. Park Ji-hoon, Ryeoun, Choi Min-Young, Yoo Soo-Bin, Bae Nara, Lee Min-Jae, and Lee Jun-Young are among the cast members revealed by Netflix.
Sweet Home 3
Despite a lukewarm response to Sweet Home 2, a new installment of the K-drama is in the offing. Sweet Home Season 3 is headed to Netflix in the summer of 2024. Viewers can anticipate the new season's release to fall within the timeframe of June 20, 2024, to September 22, 2024.
AI can make thousands of podcast episodes every week with very few people.
Making an AI podcast episode costs almost nothing and can make money fast.
Small podcasters cannot get noticed. It is hard for them to earn.
Advertisements go to AI shows. Human shows get ignored.
Listeners do not mind AI. Some like it.
A company can now publish thousands of podcasts a week with almost no people. That fact alone should wake up anyone who makes money from talking into a mic.
The company now turns out roughly 3,000 episodes a week with a team of eight. Each episode costs about £0.75 (₹88.64) to make. With as few as 20 listens, an episode can cover its cost. That single line explains why the rest of this story is happening.
When AI takes over podcasts human creators are struggling to keep up iStock
The math that changes the game
Podcasting used to be slow and hands-on. Hosts booked guests, edited interviews, and hunted sponsors. Now, the fixed costs, including writing, voice, and editing, can be automated. Once that system is running, adding another episode barely costs anything; it is just another file pushed through the same machine.
To see how that changes the landscape, look at the scale we are talking about. By September 2025, there were already well over 4.52 million podcasts worldwide. In just three months, close to half a million new shows joined the pile. It has become a crowded marketplace worth roughly £32 billion (₹3.74 trillion), most of it fuelled by advertising money.
That combination of a huge market plus near-zero marginal costs creates a simple incentive: flood the directories with niche shows. Even tiny audiences become profitable.
What mass production looks like
These AI shows are not replacements for every human program. They are different products. Producers use generative models to write scripts, synthesise voice tracks, add music, and publish automatically. Topics are hyper-niche: pollen counts in a mid-sized city, daily stock micro-summaries, or a five-minute briefing on a single plant species. The episodes are short, frequent, and tailored to narrow advertiser categories.
That model works because advertisers can target tiny audiences. If an antihistamine maker can reach fifty people looking up pollen data in one town, that can still be worth paying for. Multiply that by thousands of micro-topics, and the revenue math stacks up.
How mass-produced AI podcasts are drowning out real human voicesiStock
Where human creators lose
Podcasting has always been fragile for independent creators. Most shows never break even. Discoverability is hard. Promotion costs money. Now, add AI fleets pushing volume, and the problem worsens.
Platforms surface content through algorithms. If those algorithms reward frequency, freshness, or sheer inventory, AI producers gain an advantage. Human shows that take weeks to produce with high-quality narrative, interviews, or even investigative pieces get buried.
Advertisers chasing cheap reach will be tempted by mass AI networks. That will push down the effective CPMs (cost per thousand listens) for many categories. Small hosts who relied on a few branded reads or listener donations will see the pool shrink.
What listeners get and what they lose
Not every listener cares if a host is synthetic. Some care only about the utility: a quick sports update, a commute briefing, or a how-to snippet. For those use cases, AI can be fine, or even better, because it is faster, cheaper, and always on.
But the thing is, a lot of podcast value comes from human quirks. The long-form interview, the offbeat joke, the voice that makes you feel known—those are hard to fake. Studies and industry voices already show 52% of consumers feel less engaged with content. The result is a split audience: one side tolerates or prefers automated, functional audio; the other side pays to keep human voices alive.
When cheap AI shows flood the market small creators lose their edgeiStock
Legal and ethical damage control
Mass AI podcasting raises immediate legal and ethical questions.
Copyright — Models trained on protected audio and text can reproduce or riff on copyrighted works.
Impersonation — Synthetic voices can mirror public figures, which risks deception.
Misinformation — Automated scripts without fact-checking can spread errors at scale.
Transparency — Few platforms force disclosure that an episode is AI-generated.
If regulators force tighter rules, the tiny profit margin on each episode could disappear. That would make the mass-production model unprofitable overnight. Alternatively, platforms could impose labelling and remove low-quality feeds. Either outcome would reshape the calculus.
How the industry can respond through practical moves
The ecosystem will not collapse overnight.
Label AI episodes clearly.
Use discovery algorithms that reward engagement, not volume.
Create paywalls, memberships, or time-listened metrics.
Use AI tools to help humans, not replace them.
Industry standards on IP and voice consent are needed to reduce legal exposure. Platforms and advertisers hold most of the cards here. They can choose to favour volume or to protect quality. Their choice will decide many creators’ fates.
Three short scenarios, then the point
Flooded and cheap — Platforms favour volume. Ads chase cheap reach. Many independent shows vanish, and audio becomes a sea of similar, useful, but forgettable feeds.
Regulated and curated — Disclosure rules and smarter discovery reward listener engagement. Human shows survive, and AI fills utility roles.
Hybrid balance — Creators use AI tools to speed up workflows while keeping control over voice and facts. New business models emerge that pay for depth.
All three are plausible. The industry will move towards the one that matches where platforms and advertisers put their money.
Can human podcasters survive the flood of robot-made showsiStock
New rules, old craft
Machines can mass-produce audio faster and cheaper than people. That does not make them better storytellers. It makes them efficient at delivering information. If you are a creator, your defence is simple: make content machines cannot copy easily. Tell stories that require curiosity, risk, restraint, and relationships. Build listeners who will pay for that difference.
If you are a platform or advertiser, your choice is also simple: do you reward noise or signal? Reward signal, and you keep what made podcasting special. Reward noise, and you get scale and a thinner, cheaper industry in return. Either way, the next few years will decide whether podcasting stays a human medium with tools or becomes a tool-driven medium with a few human highlights. The soundscape is changing. If human creators want to survive, they need to focus on the one thing machines do not buy: trust.
By clicking the 'Subscribe’, you agree to receive our newsletter, marketing communications and industry
partners/sponsors sharing promotional product information via email and print communication from Garavi Gujarat
Publications Ltd and subsidiaries. You have the right to withdraw your consent at any time by clicking the
unsubscribe link in our emails. We will use your email address to personalize our communications and send you
relevant offers. Your data will be stored up to 30 days after unsubscribing.
Contact us at data@amg.biz to see how we manage and store your data.